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Abstract
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1 Introduction

In this paper we present a well-posedness result for a new model describing the behavior
of nonlinear elastomers. These models for filled (e.g., with carbon black) rubber-like elas-
tomers are motivated by formulations for large deformation tensile dynamics. When properly

modeled, these dynamics require finite strains [31, 33]

ou 1 [(0u\’ 1,
_8_:C+§(a_$) —6‘|‘§6 (1'1)

>

in constitutive laws, where ¢ = g—g is the usual infinitesimal strain of linear elasticity (see
[8, 14] for basic modeling techniques as well as specific examples related to longitudinal
(tensile) deformation models). Computational and experimental results [9, 10, 11, 13] have

confirmed that nonlinear constitutive laws
o(t) = Ge(é(t)) (1.2)

are adequate but required to model even the small deformation elastic dynamics for lightly
filled elastomers. However, for more highly filled elastomers (the primary focus for both
passive and active damping devices), hysteresis is present and viscoelastic behavior must be

combined with basic nonlinear elastic behavior in constitutive laws of the form
o(t) = ée(é(t)) + év(é(t +35): —o0 <s<0). (1.3)

In light of (1.1), this is equivalent to attempting to determine nonlinear maps g., g, so that

the constitutive law is given by
o(t) = ge(et)) + gu(e(t+5) 1 —o0 < s <0). (1.4)

We choose to model this hysteresis using a Boltzmann type law of the form

o) = el + [ V(=) gulels), (s))ds, (1.5)

where o denotes the stress and e the infinitesimal strain. This stress-strain law implies
that the stress depends not only on the current strain but also on the history of the strain
and the strain-rate. This law contains several standard internal strain or internal variable
formulations as special cases. The ADF models of Lesieutre [24, 25] for composite materials

exhibiting both elastic and anelastic displacement fields are formulated on the assumption



that the host elastic material contains anelastic materials with internal strains ¢; which are

elastic strain driven, i.e., the constitutive laws have the form

o(t) = Fre(t) — Fae(t), (1.6)
where the internal strain is described by

é1(t) + cren(t) = eae(l), (1.7)

or

¢
e1(t) :/0 c26_cl(t_5)6(5)d5.

More generally, one might have a nonlinear version of (1.7) given by
a(l) + cra(l) = gu(e(t)). (1.8)
On the other hand, Johnson et. al., [22] propose a linear alternative to (1.7)
E(t) + cra(t) = cét) (1.9)
in which the internal strain is strain rate driven, with nonlinear generalization given by
(1) + eren(t) = go(E(0)). (1.10

Our attempts to use models equivalent to (1.6) with either (1.8) or (1.10) to describe either
quasi-static or dynamic tensile test data [13] have not been successful. However, more general

models of the form (1.5) which correspond to an internal strain model of the form

d

a(t) + erer(t) = (1), 1) (1.11)

have performed quite well in modeling our quasi-static and dynamic tensile experimental
data. In these applications we required that the derivative % in (1.5) be a distributional

derivative (in the sense described below) and that g, have the form

oy ) oguile(s)) if é(s) >0
gv(6(5)76(8)) - { gvd(e(s)) if é(S) <0 }

i.e., the viscoelastic response differs when the material is loading from that when it is unload-
ing. This is one novel feature of our model which is based on our experimental findings [13].

In the following we shall refer to the nonlinearities g. and g, as the elastic and viscoelastic
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response functions, respectively. Our kernel function Y is assumed positive, decreasing and
is not singular at 0. In practice, we consider Y (§) = ¢z exp(—c1€), where ¢y, ¢2 are positive.
Moreover, we expect that the material does not exhibit infinite memory, but depends sig-
nificantly only on history of finite length, r. Exponential memory kernels Y are such that

Y (&) =~ 0 for £ > r, and r sufficiently large. Therefore, we approximate (1.5) by

o (1) = aele(t)) + [ V{1~ 8) Fgulels).é(s))ds. (1.12)

t—r

In a typical experiment the rubber rod loads and unloads periodically. Let us suppose that

it loads from tx to txy1 when K is even, where {3 = 0.

to
Figure 1: Loading and unloading of the rubber rod

Assuming that tx <t < txgy1, where K is odd, and r > t,,,,, where t,,,, is the maximum
value of ¢ of interest, we may integrate by parts in the integral term in (1.12) interval by
interval to obtain:

t.

o(t) = ge(e(t)) + Y (0)gua(e(t)) + | Y(t = s)gu(e(s))ds

F RV~ 1)) c00) = (0] (119

We shall refer to the terms in the summation as "jump terms” and the {{;} as "turning
points”. We note that we obtain a similar system in the case the rubber rod is loading, i.e.,

lg <t <igsr, Keven.



We consider the longitudinal motion of an elastomer rod of length ¢ and let u(¢, z) denote
the displacement at time ¢ of the section of the rod originally located at z, 0 < = < {. The

motion is governed by the equation (for a careful derivation see [8, 11])
PAcutt - Acar(l’v t) —I_ f(xa t)a (114)

where A, is the undeformed cross sectional area, and p is the density. Combining our stress

strain law with (1.14) we obtain the model for {x <t < tx41, K odd:

0*u 0 . [Ou ou ou
pAcw:a—xlAcge(a )—I—AY(O)gvd(a )—I—A/tTY(t—s) (8:1:)d8

+ A, iY(t — 1) (= 1) g (g—Z(tk)) — Gud ( ) ] for 0<z<l (1.15)
13}

k=1

A, [ge (%(i)) + Y (0)gua (g—Z(t)) + Y(t—s) (7 )
I..-

Q

#3500 ( )) (1.16)
u(t,0) = 0 (1.17)
u(0,2) = o (1.18)
w(0,2) = 0 (1.19)
w(tz) = o1, <0, (1.20)

We assume that the rod begins its motion at rest with possible deformation g, fixed end at
z = 0, and memory 1. We also suppose that §.(£) = ¢ + ¢.(¢), and include an (internal)
Kelvin-Voigt damping term euy, (¢ > 0) in the model. Then the system in variational form

1s:

pAE — e Ay, — Ac% (g—z + ge(%) + Y(O)gud(g ) + t; Yt - s)gv(%(s))ds

+3V (= (-0 G(00) ~ g G0 = £ (1.21)
W(t.0) = 0 (1.22)
u(0,2) = o (1.23)
uy(0,2) =0 (1.24)
u(t,z) =¢1, t<0, (1.25)



where (1.21) holds in the sense of V*, where V' is an appropriately chosen Hilbert space.
In the following sections we shall show that, under certain assumptions, the system (1.21)-
(1.25) has a unique global weak solution. The study of Boltzmann type constitutive laws is,

of course, not new and similar stress-strain laws, e.g.,

o(t,x) = ¢(e(t,z)) + /_too a(t — s)(e(s,x))ds (1.26)

along with the resulting equations were studied by numerous other authors. To summarize
a few related results, we note that it is known that in case the kernel a is regular, globally
defined smooth solutions exist for sufficiently smooth and small data. However, smooth
solutions can develop singularities in finite time if the data are suitably large [15, 17, 18, 27,
35]. The existence of weak solutions was shown in a special case in [29]. It appears that if
the kernel a is singular at zero, more regular existence properties can be established. (The
use of singular kernels is supported by several investigators in polymer physics, e.g., Doi and
Edwards [16], Rouse [32], Zimm [36], and Laun [23].) In this case, existence of global weak
solutions was obtained in [2, 12, 19, 20, 28], while in [21] under some suitable assumptions
the author shows that global smooth solutions exist for arbitrary data. A good survey of

results concerning viscoelastic models can be found in the monograph [34].

2 Existence of weak solutions

We are going to consider the system

s — e — 2 (9— a0 YO0+ [ V(= ) ()i

6:5 8:[1 aa; —r
K ou ou .
+D_ V(- tk)(—l)k“[gm(a—(tk)) - gud(—(tk))]) =F(t) in V* (2.1)
P z Ox
u(t,0) =0 (2.2)
w(a,2) = g0 (23)
u(a,z) =0 (2.4)
u(t,z) = ¢1, t<a, (2.5)
for a < tg <t < igy1 = b. Our strategy in proving the existence of weak solutions is
to consider the intervals [to, 1], [t1,t2], ..., [tx,tx+1] consecutively (fo = 0). On [to,t1] the
rubber is loading, g, = ¢,; and there are no jump terms present. First we are going to

show that a unique weak solution u{!) exists on this interval and is smooth enough so that
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uM(1y), ag—;l)(tl) exist. Next we suppose that a unique weak solution u) (1) exists on [0, ¢ x]

and we consider the interval [{x, tx41]. There we have a similar system as above except that

now we pick up a jump term and @ and o, are modified, i.e., ¢o = u®)(1x) and

v ©1 ift<0
P w50 <t < g

We will again show that a unique weak solution @ exists on this interval with the necessary

u(K-i—l)(t) _ u(K) if ¢ S tx
'INL lf t]{ < t < t]{_|_1.

smoothness and

is a weak solution on [0, ¢x41].

We choose V = H}(0,0) = {¢: ¢ € H'(0,£), ¢(0) =0} and H = L*(0,¢), so we have the
Gelfand triple V — H < V*. (-,-) denotes the inner product in H, while (-, -)y«y stands
for the usual duality product. Also, there exist k, k such that

kllgal® < 1111 < k6|’ (2.6)

for every ¢ € V. Let L[, 5 denote the space of functions u : [a, b] — H such that
Lrp={u: ue l*(a,bV), u€La,bV)}.

We say that u € Ly, is a weak solution of (2.1)-(2.5) with ¢ € V and ¢ € L*(a —r,a; V)

if it satisfies

Lt [_<ut7 9915> + <u177 9995> + €<uzt7 9995> + <ge(uz)7 9017> + <Y(O>gv(u957 uf)v 99$>

K

+<k§_: H(r = )Y (7 = ) (=1 [guiua(te)) = goalua(ls))], pz) dr

-|-</TT_T Y(T — 8)Gu(Ug, Uz )ds, 0u) | + (ue(t), ) = /;(F, Oy vdr (2.7)

forany a <tx <1t <{ig4y = band ¢ € L, as well as the initial condition

u(a,r) = @o. (2.8)

Here
1 ifs>0
H(S)_{o ifs<0.}



2.1 Assumptions and Main Result

We make the following assumptions (these assumptions on the nonlinear term are the same

as in [6], except that we require that a strict monotonicity condition hold for g. + ¢,.):

Al) g., gvi and g¢,4 are continuous nonlinear mappings of real gradient type,i.e., ge, Gui, Gud :
H — H such that there exist continuous Frechet differentiable nonlinear functionals

Ge, Gm', Gvd cH— IR with

GL(p)y = Re(ge (), ¥) (2.9)
Gi(9)Y = Re(gui(p), ) (2.10)
Ga(@)Y = Re(guale), ¥) (2.11)

for every ¢ € H.
A2) There exist constants Cf, CV, Cvd, Cs, C, C¥ Cs, C¥ C¥ ve v v* > 0 such that

k

(7 = v)lell® = COF < Gelp) < Cillell® + €5 (2.12)
];‘i -1 vt 2 vt vt 2 vT

=T = rllell” = 67 = Guile) < Gylllel” + Cs (2.13)
]Ng - v v v v

kv Dell® = C1 < Gra(p) < C3l0l* + C5° (2.14)

A3) The nonlinear functions g, g, gua satisfy

lge()l < Cillell + C5 (2.15)
lgwi(@)| < CHlleell + ' (2.16)
lgua(o)ll < CYllell + O3 (2.17)

for every ¢ € H, for some constants C’f, CN'S, CN'{”, C’;”, CN'fd, C’;d.

A4) The Frechet derivatives of g., g,; and g,q exist and satisfy

gi(yp) € L(H,H) with ||g.(¢)|lcqrm < C5, (2.18)
ghip) € L(H, H) with ||gb(2)|| e < €3 and (2.19)
gha() € L(H, H) with |lgly(¢)]lcqmm < C3 (2.20)



A5) We suppose that the following monotonicity conditions hold for every ¢, ¢ € H, with
p > 0:

Re(ge(0) — 9:(¢), ¢ — ) 4+ Re(gui(p) — gui(0), 0 — ) > plle — o[, (2.21)

Re(ge(9) — g (1), 0 — ©) + Re(gua(9) — gua(¥), 0 — ) > pllp — %, (2.22)

A6) We assume that Y is a smooth memory kernel such that there exist constants Cy, Cs, Cs
such that

YOI G YIS C, V()] < Co (2.23)
for —r <t < t,4z.
A7) The forcing term F € L*(0, 0.5 V™).
Our main result is the following:

Theorem 2.1 Under assumptions A1)-A7) there exists a unique global weak solution of
(2.1)-(2.5) for any w0 € V, @1 € L*(a —r,a; V).

We first prove that under these assumptions a weak solution u € Lo, exists for any g € V
and ¢y € L*(—r,0; V), i.e., we use a = {5 = 0,b = {; in our definition of the weak solution.
The method of the proof is very similar to the one in [6]. First we give an apriori estimate,
then introduce Galerkin approximations to the weak solution and justify taking the limit.
The monotonicity condition (2.21) plays a major role in showing that the limit of the Galerkin
approximates is a weak solution. Next we show that this solution can be continued on [t1, {5],

etc.

3 The weak solution on [0, ]

In this section we consider the interval [0,¢;], where the rubber is loading for the first time,

gv = gui and no jump terms are present. Thus we have the following system:

e~ o (G4 G+ VO 3+ [ V(- Gt
= F(t) in V* (3.24)
u(t,0) =0 (3.25)



u(0,2) = o (3.26)
u(0,2) =0 (3.27)
u(t,z) =¢1, t<0, (3.28)

3.1 The apriori estimate

Let us assume that Y (0) = 1. We choose ¢ = u; and take the inner product of (3.24) with
®.

<Utt7 Ut>V*,V + <uz7 utz> + 5<utm utz> + <98(uz)7 uta?> + (gm(uI), ut$>
t .

+( Y (t — 8)gp(tg)ds, uy) = (F (1), us)vs v

t—r

Taking the real part and using (2.9),(2.10) we get:

d Tl 1
& LGOI + Sl + Golise) + Gus)] + e )
t.
+ Re /t V(1 — 8)gu(us)ds, ) = Re(F (), us)yy (3.29)

Integrating from 0 to ¢, (where ¢t < 1), and using (2.6), (2.12),(2.13) we obtain

t 1 T .
e + vlally + 26 [ ul?dr +2 [ Re( ["V(r = $)gui(u.)ds, wi)dr < M;
o .

t t
0ol +2 [ Re(FLugvevdr =2 [ Re( [ ¥(r = s)gui(er.)ds, u)dr, (3.30)

-7

where v = %(Ve + v*"). Note that we have separated the hysteresis integral into two terms

assuming without loss of generality that r > ¢. Thus,
t
[N + vllully + 5/0 [uell-dr < My + Mi|lgo||* — 21 + 21, — 215, (3.31)

where

¢ T
I :/ Re(/ Y (7 — 8)gui(uz)ds, ug)dr,
0 0
¢
1 :/ Re(F,us)y+vdr and
0

i 0 .
Iy= [ Re([ ¥(r—s)gu(gr)ds, us)dr.
0 T—T
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First we estimate I1. Let M(7) = [§ Y(T — 8)gui(ug)ds.

t d

< (M) w) = (M), us)dr

: d
e ‘/ Re(M(r), ~—u,)dr
0 dr

+6l[us? + ‘/ ( 0)gui (1o (7)), s (7)) + </T Vir - s)gm(ux(s))ds,um(m) dr

0

(3.32)
Estimating the integral, we have
[0 0 osa(7)), walr )| < VO [ i) sl
< VO] [ (CFlul + O ualldr < Ms [ ullydr + M, (33

and

/Ot</o V(1 — 8)gui(ua(s))ds, ug(r))dr

< [ [ V(7 = )guitun)dsl ()l dr
t pT . . . . . . t ~ .t
< [ [ GGttt + E5astuclar < ol [ ucar) + €05 [ ular

1
< M5/0 ul2dr + M. (3.34)

We use a standard estimate for 15 :

t 1 rt
Ll <y [ ulpdr + o [ 1F)-dn (3.35)
0 Y Jo

where v > 0 is chosen such that 2y < &. Let M(7) = [°_ V(7 — 5)gu((¢1)z)ds. We have

< |[(M(7), us)

7=t i a
\Iy] = ‘/ Re(M (1), us)dr| < - [ ), wdr

(- -
< @HM(t)H2 + aflus|* + 4—!\]‘4(())!\2 + Bll(0)ell”

(7 = 8)gu((¢1)a)ds, us)

ar < [ V= hautendslius(r)ar

. . t
+—HM(75)H2 + affug||* + —HM(U)W + Bl (o)s|” < M?/ lull3-dr
4o 43 0
1 - - 1 -
Ms + —||M ()| E~ 4|3 + —||M(0)]?
Mo+ SO+ bl + 1 O)]

+B8k|ol[3- (3.36)

11



Since
) t . ) t ~ . \?
IMEIE = [Vt = $)gus(ua)dsl* < (Cs [ CFluc] + C3'ar)
t
< Mg/ |u||3-dr + My and
0
IM(1)]| < M, (3.37)
by (3.32)-(3.36), we have that (3.31) yields
t t
eI + olully + 0 [ Nl dr < Clpo,pn, o) + Mia [ flu(r)lpdr  (3.38)

for a, 6, small enough, (8 = ¢ — 2). By Gronwall’s inequality, it follows that
t ~
lue(I* + Zllu(t)]l + 9/0 ludll-dr < Co, 1, Fta). (3.39)

3.2 Galerkin approximations and their convergence

Let {¢x}2, C V be an orthonormal system in V. We define Galerkin approximations for

(3.24) by
N

u(t) = ; ci (1),

where {cl(¢)} are chosen so that u™ (1) satisfies

d? d
B 0),) + () ) + (g, )
t .
) 5) V0 )0 s ) = (B )y
for y =1,..., N, with initial conditions (3.40)
d
ey (0) = e, chj(o) = 0. (3.41)

We choose {c¥} so that limy_ ., 35° cllr = o in V. Arguing in the usual way we obtain

that the Galerkin approximations also satisfy (3.39), i.e.,
t ~
lur” (DN + 2™ ()] + 9/0 lug' |[3-dr < C, (3.42)

where C is independent of N.

12



It follows from (3.42) that {u™} is bounded in C'(0,¢;;V) C L*(0,1;V), and {ul¥} is
bounded in C'(0,¢y; H) and in L*(0,¢1; V). Thus, there exists a subsequence (denoted again
by uV) such that

u — u weakly in  L2(0,1; V) (3.43)
ull — u; weakly in  L*(0,44; V). (3.44)
As in [6] we can show that there exist a subsequence u™ and u € Lg,,] such that
a) The set {u"} is equicontinuous and bounded in C'(0,#;; V) and
uMN(1) = u(t) weaklyin V (3.45)
uniformly in ¢ € [0,¢], i.e., u¥ — w in Cw(0,4;; V);
b) The set {uN} is bounded in C(0,#;; H), equicontinuous in Cy(0,¢,; H) and
ul (1) — us(t) weakly in H (3.46)
uniformly in ¢ € [0,];
c)
ull — u; strongly in  L*(0,ty; H); (3.47)
d) There exist h., h,; € L*(0,¢;; H) such that
ge(ul) — h. weakly in L2*(0,1; H), (3.48)

T

gvi(uiv) — hy; weakly in  L*(0,t;; H). (3.49)

(3.48) and We note that (3.49) follow from (3.42), (2.6) and (2.15), (2.16). We can prove
(3.45) exactly as in [6] using a general version of the Ascoli-Arzela Theorem [30]. The
same technique can be used to show the statement (3.46), once equicontinuity of {ul¥} is
established. The key to this (as in [6]) is the boundedness of the set {ul}} in L2(0,¢;V*) :
For a fixed M, let &y = Y M, ag(t)y, ap € C*0,14]. For N > M we have

@) = | [ vepdr] < | [T [~ 0ur) - efull @)

(), ®ara) = (gua(u), @ass) = (| V(7 = $)gus(ul ), @) + (F, @)

13



0o . ty
([ VU7 = $)gu(ora)ds, 0| dr| < [V () v | @arlvds

11 i1 131
g [ (O I@arllvdr + ms [ llg (a1l + o [ gl @arlvdr

V*

31
s [ [ gt dslindivdr + [ 1FE) v l@ullvdr +ms [ [@ulvdr

§ [‘Hq)MHL%O,tl;V) (350)

By (3.42), K does not depend on N or M. ((3.50) is valid for N < M also, by the orthogo-
nality of t.) Equicontinuity can now be proved exactly as in [6].

Now since {u} is bounded in L%(0,#;; V) and by (3.50) {uly } is bounded in L(0,#;; V*),
Aubin’s lemma ([6, 1, 26]) guarantees that the set {u}} is relatively compact in L2(0,,; H).
Therefore we can conclude that there exists a subsequence u™
in L?(0,¢y; H), which proves the statement (3.47). Thus the statements (3.43)-(3.49) are all

established.

such that uY — w; strongly

3.3 The limit process

Let Par denote the class of functions n € Ljg4,], which can be represented in the form
M
n(t) =D ar(t),
k=1

where ax(t) € C'[0,1]. Then P = U3j_,Pn is dense in Lyg,,]. By definition the Galerkin

approximations u” satisfy

T o) e + ) + gl o) + () )
[V = 5)guu s, )] dr + (¥ (0, 0) = [ (Fo)vedr

—/ / (1 — 8)gu(p1)ds, n.)dT (3.51)
for all n € Py, for M < N. Let n € Pas be fixed, with M < N, and take the limit in (3.51)

as N — oo. We obtain

/ (= ey o) + (Ua, 02) + (Uat, M) + (hey02) + (hoiy 02)
—|—</ Y(T — 8)hyids,ng) | dT + (ue(t),n) = /Ot<F,n>V*7VdT

—/ / (71— 8)gu(p1z)ds, ng)dT (3.52)

14



We can argue that passage to the limit is possible in the hysteresis term since for given

tel0,ty],pe H N : L*0,¢; H) — IR,
1 T .
N @) = [([ V(= )e(s)ds, o)dr
is a bounded linear functional on L?(0,¢; H) and therefore weakly continuous. Consequently,

/Ot</07 Y(T - S)gm(ui\[)ds, Ne)dT — /Ot</OT Y(T — 8)hyi(s)ds, nz)dr,

by (3.49). Passage to the limit in all the other terms can be argued based on the convergences
(3.43)-(3.49) (for details see [6]). Equation (3.52) holds for all n € Py for all M, and since
P is dense in Loy, for all n € Lyoy,] as well.

To conclude that u is indeed a weak solution, it remains to argue that for any n € Ljg4,]

and for ¢ € [0, 4]
[ W) o) + {gui(e). )
H TV = s)gatue)ds,n)| dr = [ [k ) + (huime)

—|—</T Y(T — 8)hyids, nz>] dr. (3.53)
0
First, we prove the following lemma.

Lemma 3.1 There exists Ty with t1 > Ty > 0 such that for any t < Ty and any ¢, €
L*(0,1y; H) we have

[ Rel(0:(6) — 0:(9), 6~ ) + (02:(6) — 9u(1). 6 — )
H TV = 5)0(9) — gu)ds, 6 — )] dr > & [Mlg— plpar. (350

To depends only on p (from the monotonicity assumption (2.21)), on C¥ from (2.19) and
the bound Cs5 on Y.

Proof: By (2.21) we have

[ Re[9:(6) — 0096 — ) + (0ui(6) — i), 6 — )
TV = 9)(0ul0) = i), 6= )] dr = [ ullé = plfar
b [V = 9)006) — 905, 6 — p)r (3.53)
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Now

L V(= 5)((9() — (), 6(r) — () dr

[TV = 9) [ 64006+ (1 = 0)8)(8(s) — (s))dbds, 6(r) — () dr

<// |YT_5|/ C3'l|6(s) — 1 (s)l|dbds|| ¢(7) — v (7)|ldT < O Cs </0tH¢_77/J”dT)2

< C’gi05t/0 16 — o||%dr. (3.56)

Thus, for C¥Cst < £, i.e., for £ < min(

Lemma 3.1 is proved.

t, 2@%05) = To, we have that (3.54) is satisfied. Thus

Let t < Ty, n = v in (3.51) and take the limit as N — oo. Using the convergences
(3.43)-(3.49) and the weak lower semicontinuity of norms in a Hilbert space, the comparison

with (3.52) yields
t
Jim Re [ [(g. (), ul)

o))+ V(7 = s)gua(ud s, ub) | dr

T

§/t<he,uz>—|—<hm,uz>—|—</0 Y (r — 8)hids, ) dr (3.57)

Now by Lemma 3.1 with ¢ = v and ¢ = 5, we have for t < T}
0< 5 [l — nelpdr
2 Jo
<Re [ [{(g.(u2) - gul))s ) — n2)
(9 (1)) = gui(n2))s g = )

H [ V(= $)gulud) = guilna)ds, ul —n2)]| dr. (3.58)

Letting N — oo in (3.58) and using the above relation (3.57) along with the standard
Minty-Browder technique, we find

/ [(ge (1), ne) + (Goi (), 1)
[V = S)gatuds, )| dr = [ (o) + (huisn)
—|—</OT Y (7 — 5)hyids, 779;>] dr (3.59)
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for all n € Lo 4,1, which proves (3.53) for ¢ € [0, T;]. We note that it is possible to show that
ul — u, in L*(0,Ty; H), (3.60)

by setting n = u in relation (3.58) and passing to the limit as N — oo, again using (3.57).
Note that this implies uy — u strongly in L?(0, To; V).

Thus, we verified the existence of a weak solution on [0, 7;]. Since T depends only on
constants from our assumptions (and independent of the solution itself) we can extend the

weak solution to [T}, 27y] etc. to obtain the weak solution u(!) on the interval [0,,].

3.4 Uniqueness of the weak solution on [0, ]

Let w and @ be weak solutions of (3.24) on [0, 1] corresponding to the data ¢g, 1, f. Then
w = u — U satisfies w(0) = w(0) = 0, w(t,z) =0 for t < 0 and

(wee, M)vey + (Wa, 0z) + (Wi, 1) + (ge (), 1)

o)) + ([ V0= $)gulua)ds,ne) = (0.(02),ma) = (guia) )

([ V(- )guli)ds.n) =0 (3.61)
for all € Ly4,) and for almost all £ € [0, 4], by the definition of the weak solution. Let

Age - ge(uz) - ge(az)

Choosing 1 = wy in (3.61) we formally (w; & Lo 4,]) obtain:

d (1 1

) {ﬁHthQ + §erH2} + €Hwtx||2 + (Age, wiy) + (Agui, Wiy )

—|—</T Y(T — 8)Agyids, wy) =0 (3.63)
0

Integrating from 0 to ¢, (¢ < 1) we obtain:
¢
e + &= w(®)]F + 25/0 [wia|*dr

¢ T
< —2/ [(Age, Wez) + (AGuis Wiz) + (/ Y (7 — 8)Aguds, wey)| dr (3.64)
0 0
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Now [3(Ag.,ws,)dr and [ (Ag,,ws,)dT can be estimated as in [6], i.e.,
t

/ (Age, wiz)dT
0

and (3.66)

11
/ <Agvi7 wtav>d7_
0

< ce—k / lw(r) |} dr + Cs 5/ e, || dr (3.65)

vt L5 i vt f
< Ok [e(ldr + €36 [ uenlfdr  (3.67)

where 6 > 0 is arbitrary. Also,

1 T .
/ </ Y(7 — s)Aguids, wy,)dr
o 'Jo

/0t</07 Y(T — 5) /1 g (Ous(s) + (1 — 0)iz(8))(up — U, )dOds, wy,)dT

</ / C5CY |[ws || ds||we|dr < ¢k 5/ HwHVdT—I—&l/ w27 (3.68)
for any 6 > 0. Hence, if we choose ¢ small enough, (3.64) along with (3.65)-(3.68) gives
¢
lwell® + &= w3 < L/O ()l dr. (3.69)

By Gronwall’s inequality we obtain w(t) = 0 on [0, ¢], which shows that the weak solution is
unique on [0, #1].

Now we can show that u") possesses extra smoothness, i.e., u(") € C(0,%1; V) and ugl) €
C(0,t1; H). We consider the systems

0 .
Wt —I' Wrx —I' EWggt = F - 5 (ge(ul})) —I_ Y(O)gv(ux1)7 url)))

oz
-I-g </t Y(t —8)gu(u Y 1))d3) (3.70)
31’ t—r A e o T )
w(0,z) =0 (3.71)
w(0,2) =0 (3.72)
and
Vit + Vg + EWggr = 0 (373)
v(0,7) = ¢ (3.74)
v4(0,2) = 0. (3.75)
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Since = (ge(ug)) +Y(0)g, (ul, My + LVt — 5)g,(uld) ug}))ds) € L*(0,41; V*) by [7] we
get that a unique weak solution w and v of (3.72) and (3.75), respectively, exists on [0, ¢1]
with w,v € C(0,11; V) and wy, v; € C(0,41; H). However, w + v and u(!) both solve (3.24)
so by uniqueness w 4+ v = (") and «() € C(0,1;V), ugl) € C(0,t1; H).

4 Continuation of the weak solution

We suppose that a unique weak solution u®) exists on [0, ¢ ] with u'®) € C(0,1; V), uz(fK) €

C(0,1x; H), and we consider the next time interval, [tx, tx4+1]. (We note that the jump points
t; are defined by w(t;) = 0, hence continuity of u; across these points is guaranteed.) We

have the following system:

t

(112 92 12) + Y O)g s t) + [ V(= 5)guuel5))ds

9
3:1: t—r

Ut — EUggpt —

+Z DY (E — £)gos(u) (12)) — gvd<<><tk>>])=F<t> in V< (4.76)

(t,()) =0 (4.77)
u(ty, ) = @o (4.78)
uy(0,2) =0 (4.79)
u(t,z) = @1, t<tg, (4.80)

where Py = ul®) (1) and
. ©1 ift<0

1= { u®) 0 <t < 1. }

We can use the same method as before to show that a unique weak solution exists on
[trc,ti41] : first we give an apriori estimate, then introduce Galerkin approximations and
show that they converge to a weak solution. If we examine this system we can see that we
can perform the same estimates as before (except that now we integrate from tx to ¢, where
tk <t < tgs1). There are only two terms that are different from those in the previous
calculations, the extra jump term and the history integral. To estimate the jump term we

have:

/t;«_l)K—l_lY(T_tfﬂ)[QM( ( )(tlx))—gyd( ( )(tjx))],ut;l»dT

S/;(—l)f"“Y(T 1) 1g0: (ul (tx)) = guoa (WS () || ueo||d7
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< Cllgu (1)) = gual D [ Nuelidr <€ [ uelPar (480

using the fact that u®) € C(0,1x;V) and the assumption A3). The history integral can be

split into three terms:

t o, 0 . tr . - "
[ V=g in)ds = [ V(= s)gorn(s)ds + [ V(= s)gu(ul,aP)ds
t—r t—r 0

+ [ V(1 = 5)guuis, ita)ds. (4.82)

tx

Again, all these terms can be estimated as before using the previous bounds on u!®). Thus

we obtain

t ~
I + lu(Oll} +0 [ Nuelifdr < Clooon, gondn, Filn)- - (4:8)
K

Galerkin approximations can be introduced as before and we can establish the same kind of
convergences as (3.45)-(3.49) now in the interval [tx,tx41]. The analogue of Lemma 3.1 is
straightforward and the limit process can be carried out as before. Thus we obtain a weak
solution @ on the interval [{x,tx41], which is again unique. We can argue as before that it

has the required smoothness and thus the proof of Theorem 2.1 is complete.

5 Numerical Results

The model mentioned in the introduction was tested on a series of physical experiments with
filled rubber samples. Here we report on one type of dynamic experiment that was performed
with a lightly filled rubber sample. Free release experiments were conducted with the rubber
rod having a 3 Ib tip mass at one end (the other end was fixed). Initially the sample was
lifted, so that no compression or extension occurred, then the support was removed and
the mass fell freely. (More details on the experiments can be found in [10].) To model this
particular sample we use a cubic polynomial for g.(€) = aje + aze* + aze®, and we suppose

that g, 1s linear and does not depend on €, i.e., g, = g,; = ¢guq. Thus we use the following

0*u 0 ou Ou ou
pAS = = [Acge (a_x) +AY(0)g, (81}) T A /t RGN (ax) ds]

for 0<ax </ (5.84)

A, [ (gi) +AY(0)g, (g—Z) +Ac/t; V(- )9 (g—Z) ds] |

20
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u(t,0) =0 (5.86)
u(0,2) = u(0,2) =0 (5.87)
u(t,z) =0, t<0, (5.88)

where Y (7) = c2¢7. Using the load cell data from the experiment, we set up a parameter
identification problem to find the parameters:p, ay, as,as, c1,ca. (Note that in our model
(5.84)-(5.88) we did not include Kelvin-Voigt type damping, while it was important for the
theoretical result. We can think of its coefficient ¢ & 0, and thus reconcile the theoretical and
numerical results.) For spatial discretization we used linear splines, while piecewise constant
elements were used in the time discretization. (More details on the computational technique
for dealing with the integral term can be found in [3, 4].) We used Matlab optimization

routines for the inverse problem. The computed result shows very good agreement with the
collected data (Figure 2).

8

- === computed
\ data

load cell
IS o
T T
<

w
T
=
N
e
\

time

Figure 2: 3 Ib extra weight, relative error 3%
This agreement is maintained across different kinds of experiments (quasi-static as well
as dynamic) which provides evidence that this type of model works well in approximating
the behavior of filled rubber samples. A paper on our detailed modeling and computational

results for quasi-static and dynamic experiments is currently under preparation.
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